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Mycorrhiza-mediated competition between plants
and decomposers drives soil carbon storage
Colin Averill1, Benjamin L. Turner2 & Adrien C. Finzi3

Soil contains more carbon than the atmosphere and vegetation
combined1. Understanding the mechanisms controlling the accu-
mulation and stability of soil carbon is critical to predicting the Earth’s
future climate2,3. Recent studies suggest that decomposition of soil
organic matter is often limited by nitrogen availability to microbes4–6

and that plants, via their fungal symbionts, compete directly with
free-living decomposers for nitrogen6,7. Ectomycorrhizal and eri-
coid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes,
allowing them greater access to organic nitrogen sources than arbus-
cular mycorrhizal (AM) fungi8–10. This leads to the theoretical pre-
diction that soil carbon storage is greater in ecosystems dominated by
EEM fungi than in those dominated by AM fungi11. Using global data
sets, we show that soil in ecosystems dominated by EEM-associated
plants contains 70% more carbon per unit nitrogen than soil in eco-
systems dominated by AM-associated plants. The effect of mycorrhizal
type on soil carbon is independent of, and of far larger consequence
than, the effects of net primary production, temperature, precipitation
and soil clay content. Hence the effect of mycorrhizal type on soil
carbon content holds at the global scale. This finding links the func-
tional traits of mycorrhizal fungi to carbon storage at ecosystem-
to-global scales, suggesting that plant–decomposer competition for
nutrients exerts a fundamental control over the terrestrial carbon cycle.

Nitrogen (N) availability influences biosphere–atmosphere exchanges
of carbon (C) by limiting C inputs to the soil from net primary pro-
duction12 (NPP), and C outputs associated with the activity of decom-
poser microbes4. Most plant species on the Earth associate with symbiotic
mycorrhizal fungi to acquire nutrients from soil. EEM fungi produce a
wide range of enzymes that release N from soil organic matter13,
whereas AM fungi lack these enzyme systems10,14. Accordingly, EEM-
associated plants (EEM plants) acquire substantially more organic N
from the soil than do AM-associated plants (AM plants)9,10,13, and also
compete directly for organic N with other free-living decomposer
microbes in the soil. A recent theoretical model suggests that uptake
of organic N by EEM plants slows the rate of decomposition and increases
soil C storage by exacerbating the nitrogen limitation of free-living
decomposer activity and their production of enzymes that degrade soil
organic matter11. There is as yet little support for this contention.

We used a mixed effects model to test the hypothesis that ecosystems
dominated by EEM fungi (EEM ecosystems) store significantly more
soil C than do ecosystems dominated by AM fungi (AM ecosystems)
after accounting for variation in soil N and other drivers of soil C storage.
We assembled a global data set containing soil C, N and clay content to
a depth of one metre, as well as site-specific vegetation descriptions to
determine biome and mycorrhizal type (Table 1). We then used global
data products to assign mean annual temperature (MAT), mean annual
precipitation (MAP)15, and NPP16 to determine whether the effect of
mycorrhizal type on soil C storage was statistically significant after account-
ing for variations in biome type and biophysical properties assumed to
control decomposition in ecosystem and Earth system models17 (see
Methods Summary). The statistical analysis included soil clay content
because such secondary minerals have the potential to sorb and stabil-
ize soil organic carbon18.

We found that EEM ecosystems store 1.7 times more C per unit of
soil N than do AM ecosystems (Fig. 1). The most parsimonious, cor-
rected Akaike Information Criterion (AICc)-selected model (mycorrhizal
type 3 N interaction, P , 0.0001, AICc-selected model R2

LR 5 0.91;
Fig. 1 and Methods) supported the removal of climate variables, NPP
and clay content, which were weakly correlated with soil C content,
though the biome type remained in the model as a random effect (Fig. 2).
The mycorrhizal 3 N interaction remained significant even when all
predictors were included in the model. This result shows that mycor-
rhizal status exerts a far larger control over soil C content than do
climate variables, NPP or clay content. Weak relationships between
NPP, climate and soil C storage at the global scale have also been reported
elsewhere19.

We conducted a sensitivity analysis of the model to ensure the find-
ings were robust to the exclusion of biomes that contained only a single
mycorrhizal type, surface organic horizons (which represent a large
fraction of surface soil C content) in cold climates and EEM data points
whose soil N content was greater than the largest observation found
in AM ecosystems (see Extended Data Figs 1–5 and Extended Data
Tables 1–5). In all cases a mycorrhizal effect was retained. This suggests
that current model formulations of the terrestrial C cycle—that is,
NPP-driven accumulations of C in soil pools that turn over based on
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Table 1 | Biome data
Biome n AM EEM C stock

(kg C m22)
N stock

(kg N m22)
MAT
(uC)

MAP
(mm)

NPP
(kg C m22 yr21)

Clay
(%)

Boreal forest 12 0 12 61.4 2.9 22.5 497 319 5.8
(11.7) (0.5) (1.3) (76) (27) (0.8)

Temperate forest 99 41 58 24.5 1.1 8.6 1,544 633 13.8
(2.6) (0.1) (0.4) (133) (28) (1.1)

Tropical forest 104 83 21 11.7 1.1 24.7 2,697 956 47.9
(0.6) (0.1) (0.3) (58) (23) (1.9)

Grassland 12 12 0 14.5 1.4 10.8 857 576 20.8
(2.2) (0.3) (1.7) (145) (99) (3.1)

n, Number of observations; AM, number of n that are AM; EEM, number of n that are EEM; C stock, mean soil C content; N stock, mean soil N content; MAP (mm), MAT (uC), Clay, soil clay content. All values are means
within a biome type, with the associated standard error given in parentheses.
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Arrhenius temperature kinetics and a soil moisture multiplier20—lack a
major driver of the decomposition process, namely, mycorrhizal type.

The results reported here support the recent theoretical contention
that competition for organic N between EEM fungi and free-living
microbes increases soil C storage11, and we show that this effect holds
from tropical to high-latitude ecosystems (Fig. 1). Competition-induced
declines in decomposition rate in EEM ecosystems are further supported
by natural abundance and 15N-labelling studies that show that EEM
plants acquire more organic N from the soil than do AM plants13,21, and
that experimental exclusion of EEM fungi increases the rate of organic
matter decomposition7 by increasing the biomass of free-living microbes
and the activity of their C-degrading enzymes6. In contrast, the exclusion
of AM fungi from the soil reduces the rate of decomposition by reducing
the substrate supply to free-living decomposers22. Greater soil C storage
in EEM ecosystems than in AM ecosystems at the large spatial scale
reported here demonstrates that fine-scale mechanistic studies on the
functionality of mycorrhizal symbioses—including N uptake prefer-
ences13,21, partitioning of plant-C belowground23, productivity24 and
decomposition7,22—can be scaled up to predict the consequences of
AM versus EEM symbioses at the ecosystem-to-global scale.

It is possible that mycorrhizal effects on soil C pools may be con-
founded by differences in litter chemistry between EEM and AM plants.
Compared to AM plants, litter from EEM plants can contain wider C:N
ratios and greater concentrations of lignin and polyphenolic compounds,
all of which are negatively correlated with short-term rates of litter
decay25. However, lignin and polyphenols represent only a fraction of
the soil C pool and compound-specific 13C labelling studies show that
these compounds decompose as fast or faster than ‘labile’ soil C compounds
such as proteins and polysaccharides26. Moreover, recent theoretical27

and empirical28 work suggests that more recalcitrant (that is, more dif-
ficult to decompose) or higher C:N plant inputs may lead to less, rather
than more, soil C storage than labile inputs because of lower microbial
C-use efficiency (that is, the fraction of C assimilated that is allocated to

growth rather than respiration). Therefore, we discount the possibility
of a direct effect of litter chemistry on the observed variation in soil C
storage among mycorrhizal types, although we cannot discount a
potential indirect effect of litter chemistry owing to variations in micro-
bial C-use efficiency.

This analysis shows that mycorrhizal functional traits are as import-
ant a control over decomposition and soil C storage as are soil chemical
properties and the physical protection of organic matter26. More broadly,
we demonstrate that the identity and functional traits of soil micro-
organisms exert a fundamental control over the terrestrial C cycle. This
implies that global changes (for example, atmospheric N deposition,
climate warming) that alter competitive interactions for N between
EEM fungi and free-living microbial decomposers will affect soil C
storage at regional to global scales.

METHODS SUMMARY
We collected data on soil C, N and percentage clay to a depth of one metre in soil
profiles spanning tropical, temperate and boreal forests and grasslands. Data were
obtained from a variety of sources, including direct observations and both pub-
lished and unpublished data (see Acknowledgements and Methods). MAT, MAP
and NPP were assigned on the basis of latitude and longitude using global data
products. Data are summarized by biome in Table 1. Data were analysed in a
mixed effects framework using the lme function implemented in the nlme package
for R statistical software29. We tested for a main effect of mycorrhizal status on soil
C as well as an interaction between mycorrhizal type and soil N with biome coded
as a random effect and all other variables coded as fixed effects. Model selection
was performed using AICc selection criteria to prevent over-fitting the model.
Results discussed in the text are based on the full model output based on the best
AICc-selected model starting with all predictors. Reported correlation factor R2

values are based on the log ratio R2. The mycorrhizal effect size reported in the text
is determined by comparing the parameter estimate of the interaction between
mycorrhizal type and soil N to the parameter estimate of the main effect of soil N,
based on model outputs from the best AICc-selected full model.
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Figure 2 | The relationships between soil carbon content to a depth of one
metre and MAT, MAP, clay content and NPP. Univariate regressions show
that MAT in degrees celcius (a), MAP in mm precipitation per year (b), depth
weighted clay content (c) and NPP in kg C m22 per year (d) are significantly
correlated with soil C storage (R2 5 0.18, 0.04, 0.06 and 0.04, P , 0.0001,
0.0022, ,0.0001 and 0.0009, respectively; n 5 227). Regression lines represent
univariate relationships rather than the output of the full model and are for
visualization purposes only. None of these predictors were significant in the full
model and were removed from the model after AICc selection.
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Figure 1 | The relationship between soil carbon and nitrogen content to a
depth of one metre in AM and EEM ecosystems. The difference between the
slopes is significant at the P , 0.0001 level, based on the best AICc-selected full
model output, after starting with all predictors (n 5 227). EEM systems store
1.7 times more C per unit N than do AM systems. Symbol shape reflects biome
categorization. Symbol colour reflects mycorrhizal type, with purple symbols
for EEM observations and black symbols for AM observations. Plotted lines
represent univariate regression lines of the respective subsets of the data and are
included for visualization purposes only.
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METHODS
Data collection. We accessed the International Soil Carbon database in February
2012 (http://www.fluxdata.org/NSCN/SitePages/ISCN.aspx), which contained a
substantial amount of data from the United States Department of Agriculture
and the National Resources Conservation Service (http://ssldata.nrcs.usda.gov).
Plant species descriptions were supplemented with the National Soil Information
System (NASIS) database (available from the United States Department of Agriculture,
National Resources Conservation Service on request). We supplemented this data
with unpublished data on 103 soil profiles from temperate and tropical forests. We
then further supplemented this database by accessing the Canadian Forest Ecosystem
Carbon Database and the Siltanen Database provided by C. Shaw, the Australian
National Soil Database provided by D. Jacquier and a subset of the California Soil-
Vegetation Survey provided by T. Baisden. We further supplemented the tropical
sites by performing a Google Scholar search for articles containing all of the words
‘‘bulk density’’ 1 ‘‘clay’’ 1 ‘‘nitrogen’’ 1 ‘‘meter’’, with the exact phrase: ‘‘soil
carbon storage’’; and with at least one of the words ‘‘tropics’’ and ‘‘tropical’’. We
also put out calls for these data on the ESA Biogeosciences Listserv and the
National Soil Carbon Network listserv. J. Powers and M. Vadeboncouer provided
unpublished data for this analysis. C. Iversen provided unpublished data from sites
described in ref. 30, with permission.
Calculating soil C and N content and clay concentration. Soil C and N content
were estimated as the sum of bulk density weighted soil C or N values to a depth of
one metre or bedrock. Soil C and N content to a depth of one metre included
organic horizons. Percentage clay to a depth of one metre was calculated as the
depth-weighted average perecentage clay concentration across all depth incre-
ments. Organic horizons were not included in the clay calculation. For our unpub-
lished data set, soil C and N concentrations were determined by combustion and
gas chromatography with thermal conductivity detection on a Thermo Flash 1112
Analyzer (CE Elantech), bulk density was determined by the excavation method31,
and particle size distribution (including clay content) was determined by the pipette
method following pretreatment to remove soluble salts, organic matter and iron
oxides32.
Assigning NPP, MAT and MAP. NPP, MAT and MAP were assigned using
global data products and the latitude and longitude of each site. NPP was determined
from a ten-year average Moderate Resolution Imaging Spectroradiometer (MODIS)
NPP product, MOD17A3 (ref. 16). MAT and MAP were taken from the WorldClim
global climate data product15.
Mycorrhizal classification. Mycorrhizal type was assigned based on a site-specific
vegetation observation of dominant species. We excluded observations that described
a mixed mycorrhizal composition when no relative abundance data was available,
although for forest biomes we ignored understory plants. When relative abund-
ance data were available we required at least 70% of basal area of trees exceeding
10 cm in diameter at breast height to be one mycorrhizal type or the other. Some
vegetation descriptions merely said ‘‘grassland’’ or ‘‘plains’’, which we classified as
AM. Seven observations had a vegetation description of ‘‘Sierran mixed coniferous
forest’’, which we classified as EEM. We note that forest classifications did not
always include information on understory species. Biomass of understory plants is
quite small by contrast to canopy trees, so it is unlikely that the understory plants
had an important effect on patterns of soil C storage.
Biome classification. Biomes were assigned using the Whittaker Biome Diagram33

and the MAT and MAP observations generated for each site from the WorldClim
data product15. There were 32 instances in which Whittaker biome classifications
were reassigned. Each of these soil observations was from a data set which had a
description of vegetation and its United States Environmental Protection Agency
ecoregion. If the Whittaker biome classification was not consistent with the vegeta-
tion description and EPA ecoregion, the biome was assigned to best match the
vegetation description. For example, if the Whittaker MAT and MAP classification
placed an observation into the temperate forest biome, but the vegetation descrip-
tion listed a ‘‘grassland’’ and the EPA ecoregion was ‘‘Great Plains,’’ then we classified
the observation as the grassland biome. Finally, 12 observations from temperate
rain forest fell far outside the Whittaker biome diagram as they had exceptionally
high MAP values for a temperate forest (.3,000 mm); however, we included them
within the temperate forest category.
Statistical approach. We sought to model C storage as a function of mycorrhizal
status and soil N while simultaneously accounting for variations in MAT, MAP,
NPP and soil clay content. The data were analysed using a mixed effects frame-
work, with MAT, MAP, NPP, clay, soil N, mycorrhizal status, and the interaction
between N and mycorrhizal status as fixed effects and biome as a random effect

because the number of AM and EM observations was not evenly distributed
among biomes. Model selection was performed using corrected AIC (AICc) cri-
teria, using the AICcmodavg package in R34. We required a minimum of a one-
point AICc improvement to justify removing a term from the model. Final linear
models did not have normally distributed residuals and were strongly heterosce-
dastic. The heteroscedasticity in the model probably arises from a sampling error
that is a constant percentage of total observed soil C and N, rather than a constant
value (that is, 610% rather than 610 kg). We therefore fitted models by percent-
age least squares by weighting each observation by the inverse of the dependent
variable (soil C stock) (as in ref. 35) and implemented using the weights function in
lme29. Normality and homoscedasticity were inspected using plots of the normal-
ized residuals. Because the R2 metric has different properties in linear mixed effects
models and in standard linear models, we report an R2 statistic based on the
likelihood ratio of the model (R2

LR) that has properties similar to those of the
R2 implemented in linear models, as presented in ref. 36 and implemented in R
using the lmmfit package37. The mycorrhizal effect size reported in the main text
and Methods was determined by comparing the parameter estimate of the inter-
action between mycorrhizal type and soil N to the parameter estimate of the main
effect of soil N, based on model outputs from the best AICc-selected full model.

Multicollinearity was assessed using variance inflation factors. These were cal-
culated using the vif function in the car package in R38. The factors were calculated
from the linear ordinary least-squares regression of all fixed effects without inter-
actions. Collinearity was determined to be not a problem because all variance
inflation factor values were less than ten for all independent variables39.

We further assessed the validity of the mixed effects framework by conducting a
Monte Carlo simulation of the data set and analysis. Soil C distributions within
biome and in most data sets are skewed distributions. To generate simulated data
we determined the skew parameters of the soil C distribution (location, shape and
scale), and then simulated a new biome-specific soil C distribution using the rsnorm
function from The VGAM package in R40. The number of new data points drawn
from each biome was set to the number of observations in the original data set. So,
for example, a total of 99 observations were drawn for temperate forests, 41 of
which were randomly assigned AM status and 58 EEM status. This data therefore
assumes no difference in the biome-specific distributions of AM versus EEM
observations, and our analysis should therefore detect no effect of mycorrhizal
type on soil C storage. We then modelled soil C content as a function of mycor-
rhizal type with biome coded as a random effect and counted the number of times
the mycorrhizal effect was significant at the 0.05 level (that is, a 1 in 20 random
chance). We found that only 6.55% of the 10,000 simulations generated a statist-
ically significant mycorrhizal effect, very slightly more frequently than expected by
random chance. Furthermore, they were just as likely to be positive as negative,
which means a positive effect of EEM status on soil C was detected less than 5% of
the time. In contrast, our analysis finds a positive effect of EEM fungi on soil C
storage at the level of P # 0.0001 (that is, a ,1 in 10,000 chance the effect is due to
random chance). Therefore, our sampling and data analysis approach did not
make us more likely to detect a positive effect of mycorrhizal type on soil C storage.
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Extended Data Figure 1 | Soil C versus N in the first 50 cm of mineral soil.
Purple symbols are EEM observations and black symbols are AM observations.
Plotted lines represent univariate regression lines of the respective subsets of
the data. We note that plotted lines are univariate regressions of data subsets
and are included for visualization purposes only. Removal of the surface

organic horizon did not qualitatively change the interpretation of the data. Both
the full model and the best AICc-selected model had a significant interactive
effect between mycorrhizal type and soil N on soil C storage, with EEM systems
storing 1.6 times more C per unit N than AM systems (P , 0.0001).
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Extended Data Figure 2 | Soil C versus N excluding boreal observations.
Purple symbols are EEM observations and black symbols are AM observations.
Plotted lines represent univariate regression lines of the respective subsets of
the data. We note that plotted lines are univariate regressions of data subsets

and are included for visualization purposes only. Both the full model and the
best AICc-selected model showed a significant interactive effect of mycorrhizal
type and soil N on soil C storage, with EEM systems storing 1.6 times more
C per unit N than AM systems (P 5 0.0014).

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 3 | Soil C versus N limiting data set to observations
with less than 3.5 kg N m22. Purple symbols are EEM observations and black
symbols are AM observations. Plotted lines represent univariate regression
lines of the respective subsets of the data. We note that plotted lines are
univariate regressions of data subsets and are included for visualization

purposes only. Both the full model and the best AICc-selected model found a
significant interactive effect of mycorrhizal type and soil N on soil C storage,
with EEM systems storing 1.4 times more C per unit N than AM systems
(P 5 0.0304).
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Extended Data Figure 4 | Soil C versus N excluding grassland observations.
Purple symbols are EEM observations and black symbols are AM observations.
Plotted lines represent univariate regression lines of the respective subsets of
the data. We note that plotted lines are univariate regressions of data subsets

and are included for visualization purposes only. Both the full model and the
best AICc-selected model found a significant interactive effect of mycorrhizal
type and soil N on soil C storage, with EEM systems storing 1.5 times more
C per unit N than AM systems (P 5 0.0023).
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Extended Data Figure 5 | Soil C versus N restricting the analysis to
temperate and tropical forest observations only. Purple symbols are EEM
and black symbols are AM observations. Plotted lines represent univariate
regression lines of the respective subsets of the data. We note that plotted lines
are univariate regressions of data subsets and are included for visualization
purposes only. Both the full model and the best AICc-selected model

incorporated the interactive effect of mycorrhizal type and soil N on soil C
storage, with EEM systems storing 1.3 times more C per unit N than AM
systems, although the effect was marginally not significant (P 5 0.0690). We
re-emphasize that the full model incorporates biome type, and weights
observations by the inverse of their C values, to prevent undue influence
of large observations on the estimated effect size.
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Extended Data Table 1 | Mineral soil (0–50 cm) analysis regression output from the best AICc-selected model

C < mycorrhizal status 3 N, random 5 biome, R2
LR 5 0.091. C, soil carbon in kg m22; EEM, the effect of EEM fungi on soil carbon. The t-value is from Student’s test. d.o.f., degrees of freedom.
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Extended Data Table 2 | Removing boreal forests analysis from the best AICc-selected model

C < mycorrhizal status 3 N, random 5 biome, R2
LR 5 0.89. C, soil carbon in kg m22; EEM, the effect of EEM fungi on soil carbon. The t-value is from Student’s test. d.o.f., degrees of freedom.
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Extended Data Table 3 | Restricting range of N content analysis from the best AICc-selected model

C < mycorrhizal status 3 N, random 5 biome, R2
LR 5 0.83. C, soil carbon in kg m22; EEM, the effect of EEM fungi on soil carbon. The t-value is from Student’s test. d.o.f., degrees of freedom.
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Extended Data Table 4 | Removing grasslands analysis from the best AICc-selected model

C < mycorrhizal status 3 N, random 5 biome, R2
LR 5 0.91. C, soil carbon in kg m22; EEM, the effect of EEM fungi on soil carbon. The t-value is from Student’s test. d.o.f., degrees of freedom.
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Extended Data Table 5 | Temperate and tropical biomes only, from the best AICc-selected model

C < mycorrhizal status 3 N, random 5 biome, R2
LR 5 0.83. C, soil carbon in kg m22; EEM, the effect of EEM fungi on soil carbon. The t-value is from Student’s test. d.o.f., degrees of freedom.
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