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Abstract

Recently flux tower data have become available for a variety of ecosystems under
different climatic and edaphic conditions. Although Flux tower data represent point
measurements with a footprint of typically 1km X 1km they can be used to validate
models and to spatialize biospheric fluxes at regional and continental scales. In this
paper we present a study where biospheric flux data collected in the EUROFLUX project
were used to train a neural network simulator to provide spatial (1km X 1km) and
temporal (weekly) estimates of carbon fluxes of European forests at continental scale.
The novelty of the approach is that flux data were used to constrain and parameterize the
neural network structure using a limited number of input driving variables. The overall
European carbon uptake from this analysis was 0.47 Gt Cyr~ ' with distinctive differ-
ences between boreal and temperate regions. The length of the growing season is longer
in the south of Europe (about 32 weeks), compared with north and central Europe, which
have a similar length-growing season (about 27 weeks). A peak in respiration was
depicted in spring at continental scale as a coherent signal which parallel the construc-
tion respiration increase at the onset of the season as usually shown by leaf level
measurements.
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Introduction

Several international efforts are today underway to con-
struct a ‘carbon data assimilation system” where models
and observations are included in an optimization scheme
to provide robust estimates of carbon fluxes at high reso-
lution in both space and time scales.

Within the carbon cycle research community two quite
distinct modelling techniques in a ‘diagnostic’ mode are
used to estimate net land-atmosphere CO, fluxes. In ‘in-
verse studies’, atmospheric CO, measurements are used
in conjunction with atmospheric transport modelling.
These studies produce useful estimates of the large-
scale geographical distribution of sources and sinks of
carbon (Bousquet et al., 2000), but they are unconstrained
by physiological and ecological processes, and cannot
currently provide good estimates at the policy-relevant
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scale of countries. In “forward modelling’, models of land
carbon uptake and release are developed based on an
understanding of the relevant processes (e.g. the re-
sponse of photosynthesis to CO,, the response of micro-
bial respiration to climate), and then these models are
integrated forward in time to produce predictions of the
temporal and spatial variability of land-carbon sinks
(Cramer et al., 2001). Estimates of the land carbon balance
produced by forward modelling to the current day are
constrained by the understanding of the system em-
bodied in the model (e.g. conservation of carbon and
nitrogen), but not constrained by any direct observations
of the carbon cycle (e.g. flux measurements, forest inven-
tories, CO, flask measurements).

Artificial neural networks are a fast expanding field
that have applications in many fields, from natural
science disciplines (physics, biology, chemistry, etc.) to
socio-economic science (literature, language, social stud-
ies, etc.) (Bishop, 1995; Demuth & Beale, 2000). Neural
networks have great potential in biology and ecology
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because they are able to represent the complexity of
phenomena in examination (Lek & Guégan, 2000). Nor-
mally in such complex systems the manifestation of a
function, or a property of the organism, represents the
arranged effect of multiple nonlinear factors, which
become activated to a given degree only in response to
particular external circumstances.

Traditional systems of simulation, based on mechanis-
tic models or statistical relationship, have great difficulty
reproducing the complex responses of organisms. In this
paper we present a preliminary study where biospheric
flux data collected in the EUROFLUX project were used
to train a neural network simulator to provide spatial
(1km x 1km) and temporal (weekly) estimates of carbon
fluxes of European forests. The novelty of the approach is
that flux data were used to constrain and parameterize
the neural network structure using a limited number of
input driving variables. Since flux data were collected at
high frequency (every half an hour) in 16 different forest
ecosystems the time domain was a good replacement for
the spatial variability. This means that when combined,
the variability in response to climate at each flux site can
be used to reproduce the effects of climate diversity
within the European continent.

The work so far is at a preliminary stage thus results
have to be viewed in the light of development of a new
methodology rather than an established method to pro-
vide a final answer to the European continental carbon
balance. However, here we present results consistent
with other independent estimates of the carbon balance
of continental Europe.

Methodology

What is an artificial neural network (ANN)?

Much of the inspiration for ANNs came from the desire
to produce artificial systems capable of sophisticated,
computations similar to those that the human brain per-
forms, thereby possibly enhancing our understanding of
the human brain.

There is no universally accepted definition of an ANN.
However, it is generally accepted that an ANN is a net-
work of many simple processing elements (‘units’ or
‘nodes’), each having a small amount of local memory.
The units, often organized in layers, are connected by
communication channels (‘connections’) and operate
only on their local data and on the inputs they receive
via the connections (Fig. 1). Most ANNs have training
rules (see below), which adjust the weight of the connec-
tions on the basis of data. In other words, ANNs ‘learn’
from examples and have the capability for generalization
beyond the training data. In summary a neural network
is a massive parallel processor with a natural ability for
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Fig. 1 Example of a neural network with three layers; this
structure can be identified as 5-3-2, 5 input nodes, 3 hidden
nodes (in only one hidden layer) and 2 output nodes. A network
with two hidden layers with three nodes each it would be written
as 5-3-3-2.

storing experiential knowledge and making it available
for use.

In this study, we have used a feed-forward back propa-
gation neural network (BPN), a powerful system, capable
of modelling complex relationship between variables,
based on a supervised procedure. The BPN is composed
by layers of nodes, where each node is connected to all
the nodes of the successive layer, without lateral or feed
back connections. The information flow is unidirectional,
from the input layer to the output layer, through the
hidden layer(s). All the errors that the network makes
with the training examples are used to modify the
strength of connections between nodes. In particular,
each node of the network receives signals coming from
the nodes it is connected to. Each input signal is multi-
plied by the weight assigned to its connection and the
weighed signal arrives at the node where it is summed
with all the others, this result is then modified by a
transfer function (S), called also activation function. The
result of the activation function is the node output, which
eventually can enter into a new node or the final result
(Fig. 2).

There are several transfer functions, but the most
common are linear and sigmoid (Fig. 3). In this study,
we used the sigmoid transfer function for each node in
the hidden and output layers, so the output will be:

1

¥=1 +ealp

where a is the weighted sum of the inputs to the node.
The p coefficient determines the shape of the sigmoid:
as p increases the curve became flatter. In many cases and
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Fig. 2 Block diagram of an artificial neurone. Supposing that
there are n inputs with signal xy, x, x3, .. . x,, and weights w;, w,,
ws,. . .w,. The weighted sum a, will be a = x;w; + xw> + x3w3
+...x,wy = Y v x;w; The a value, will enter into a transfer
function S, and transformed according to different mathematical
functions delivering the output y (see text).

(a) (b)

Fig. 3 Examples of (a) linear transfer function, (b) sigmoid
transfer function.

also in this study, this parameter is omitted so that it is
implicitly assigned the value 1.

Training a neural network A network is trained by pro-
viding a set of training examples, one at a time. Each
example is composed of all the input and the output
values; thus, each input node receives the value of one
of the independent variables and the network generates a
set of output values by the output nodes. These outputs
are the estimates that the network makes of the depend-
ent variables associated with a particular input example.

At the start of network training, the output of the
network (actual output) can be very different from the
real output (target) of each example. This difference is
then used as the basis for a scheme that modifies the
network weights with the goal being to minimize this
difference. The weights, whose values were randomly
assigned at the beginning, were modified according to
the error back-propagation rule.

© 2003 Blackwell Publishing Ltd, Global Change Biology, 9, 525-535

The inputs data were scaled between 0 and 1. This is
one of the most common forms of preprocessing of the
input variables especially when different variables have
typical values, which differ significantly. Two ANNs
inputs could be, for example, air temperature expressed
in °C and pressure expressed in Pascal; they will have
values which differ by several orders of magnitude but
their typical size may not reflect a relative importance in
determining the required outputs (Bishop, 1995). Also the
output values used in the training process were scaled
using this procedure and the inverse procedure was used
to rescale the output to unit of flux.

The error back-propagation algorithm: For each example p,
we have an error E,, which is a function of the weights.
Typically this is defined by the square difference between
the actual output y and the target t. Thus, for a single
node:

E, =t —y)?

N~

where y is a function of the weights.
The total error E is then just the sum of the data set
errors:

E=YE,
p

An error is calculated each time the neural network
is presented with a training vector and a gradient descent
is performed on the error considered as function of
the weights. The gradient descent rule technique is
based on small changes of opposite sign proportional to
first derivative of the function in that point. In this way
we get closer and closer to the minimum of the function
and once it has been reached, the first derivative in that
point equal to zero and the system stop. Thus the func-
tion shape slowly modifies (because of the modifications
of the other weights), but we will move on it with move-
ments little enough to consider such movements negli-
gible. This could be mathematically expressed as:

A dEkj

Wkj = —77?%
where 7 is ‘learning rate’, a factor that determines the size
of the steps that the network takes in navigating through
the weight-error function. The size of the learning rate
can be set by the user. As a rule, the higher the value of
learning rate, the faster the network will locate the point
in the weight space that corresponds to the low training
error. But there is a penalty for using a value of learning
rate too large: the network may continually overshoot the
point of minimum error, never reaching it, but bouncing
back and forth around it, proceeding chaotically.

In this study, we have overcome the problem related to
the size of n by altering the ‘pure’ gradient descent
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training rule to include a portion of last weight change.
The new rule is now:

dEy

Awy(t) = —n dw
j

+ 12 Awk]‘(t — 1)

where f is the time and p is called momentum and its
function is to increase the size of the step when the
direction, in the weight space, is the same as the direction
of the previous step and decreases the size of the step
when the directions of the current and previous steps are
not the same. The idea is that if the network is making
good progress in the current direction then it should keep
going forward with an even larger step. If however,
conditions have changed between the previous and cur-
rent step, then take a correspondingly small step.

Datasets and errors At the base of the network training is
a dataset made of a series of examples, each one contain-
ing the observed inputs and outputs. From these
examples, the network is trained with the aim to foresee
the output values starting from input values, which have
never been seen before, this process is known as general-
ization. In order to achieve this goal, the network must
not learn too much from the examples given during the
training, thus loosing the capability to generalize on the
basis of new examples (overfitting). The training dataset
is divided into three groups: training set, used for deter-
mination of the weights during neural network training,
test set, used during network training to calculate the
errors to prevent overtraining and wvalidation set, which
was not used at all during training. The purpose of the
validation set is to assess the network’s performance with
‘new’ data, which removes the possibility of the network
overfitting on training and test sets.

Once the three sets of data have been defined, the
training set examples are given to the network and the
error between the obtained and the real result is calcu-
lated. The modification of the weights occurs after the
passage of an epoch, that is a number of examples which
are set before starting the training and can vary from one
to the number of cases in the training set, on the network.

Another parameter, which has to be defined before
training, is the number of epochs that have to be pro-
cessed before the training process stops and the perform-
ance of the network evaluated using the test set. The
training ends either when an acceptable error level is
achieved on the test set or when there is no improvement
on the network performances after a certain quantity of
epochs has passed. Since this procedure can lead itself to
some overfitting to the test set, the performance of the
selected network is confirmed by measuring its perform-
ance on a third independent set of data called the valid-
ation set.

The evaluation of the error made by the network, on
both test and validation set, was done through the calcu-
lation of different error typologies, we have used:

Pearson correlation coefficient (r)

zp: (y — mean(y)) (t — mean(t))

B 5 mean) 3 mean()?

p

root mean squared error (RMSE)

Syt
RMSE = | *—
p

mean absolute error (MAE)

MAE = 12 ly —¢|
P
where, p is the number of examples, y is the predicted
values and ¢ is the real values.

The dataset used in this study consisted of measure-
ments of CO, fluxes taken at 16 European sites using the
eddy covariance technique (Aubinet et al., 2000). Since
measurements could be, under some circumstances,
affected by nighttime stratification and unexpected low
eddy flux data, a correction for this flux is needed. The
data correction and gap filling had already been done on
most sites using multiple regression techniques (Falge
et al., 2001) and data were already directly available for
elaboration. However, there were four sites where this
work had not been done (sites number 2, 4, 6 and 7 of
Table 1). For these sites, nighttime values (with u* <0.2)
and other gaps in the data were filled with site-specific
neural networks.

The inputs of the network trained for each site were air
temperature, air relative humidity, photosynthetically
active radiation (PAR) and two series of four fuzzy sets.
The fuzzy sets are a way to reduce the linear cumulative
numerical weight of time in relation to other variables. In
this study, season and time of day were transformed into
fuzzy sets. This transformation was made because the
progressive numerical increase of time (from day 1 to
day 365) is not a meaningful trend, in terms of informa-
tion, for the network. In each fuzzy set the variable being
transformed can take any value between 0 and 1, which
represents a degree or percent membership of the ori-
ginal variable value in the fuzzy set.

In this study, the fuzzy transformation was applied in
the following way:

month of the year (Fig. 4)

winter: start in October, maximum in January, end in
April

© 2003 Blackwell Publishing Ltd, Global Change Biology, 9, 525-535



Table1 Main characteristics of the sites used to estimate the NEE with eddy covariance system
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Country  Site name Latitude Longitude Vegetation type Dominant sp. Climate*
BE Brasschaat 51°18'N 04°31'E Mixed forest Pinus sylvestris, Quercus robur T/0
BE Vielsalm 50°18N  06°00'E Mixed forest Fagus sylvatica, Pseudotsuga menziensii T

DK Soroe 55°29N  11°38'E Broadleaves deciduous  Fagus sylvatica T/0
FI Hyytiadla 61°51'N  24°17E Coniferous evergreen Pinus sylvestris B

FR Bordeaux 44°42’N 00°46'W Coniferous evergreen Pinus pinaster T/0
FR Sarrebourg 48°40N  07°05'E Broadleaves deciduous  Fagus sylvatica T/S
DE Tharandt 50°58'N 13°34'E Coniferous evergreen Picea abies T/C
IT San Rossore 43°43'N  10°17'E Coniferous evergreen Pinus pinaster M

IT Collelongo 41°50N  13°35'E Broadleaves deciduous  Fagus sylvatica M/Mt
IT Roccarespampani  42°23'N 11°51'E Broadleaves deciduous  Quercus cerris M

IT Castelporziano 41°45'N 12°22'E Broadleaves evergreen  Quercus ilex M

NL Loobos 52°10N  05°44'E Coniferous evergreen Pinus sylvestris T/0
SW Flakaliden 64°14'N 19°46'E Coniferous evergreen Picea abies B/O
SW Norunda 60°05N  17°28'E Coniferous evergreen Picea abies, Pinus sylvestris B

UK Aberfeldy 56°37N  03°48'E Coniferous evergreen Picea sitchensis T/0
DE Bayreuth 50°09N  11°52'E Coniferous evergreen Picea abies T/C

*T, temperate; O, oceanic; B, boreal; C, continental; M, Mediterranean; Mt, montane; S, suboceanic.

Fuzzy value

Month
— = Spring

— - Winter —— Summer - - - Autumn

Fig.4 Fuzzy transformation of the month of the year.

spring: start in January, maximum in April, end in July

summer: start in April, maximum in July, end in
October

autumn: start in July, maximum in October, end in
January.

So, i.e. May will be 0 winter, 0.667 spring (67%), 0.333
summer (33%) and 0 autumn.
A similar transformation was applied for the time of
the day (Fig. 5)
morning: start at 3, maximum at 9, end at 15
afternoon: start at 9, maximum at 15, end at 21
evening: start at 15, maximum at 21, end at 3
night: start at the 21, maximum at the 3, end at the 9.

The original data from each site consisted of about 17500
samples (one measurement every half an hour) but the
dataset was composed only by those examples with com-
plete input and output data.

© 2003 Blackwell Publishing Ltd, Global Change Biology, 9, 525-535
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Fig.5 Fuzzy transformation of the time of the day.

After the corrections and the gap filling, we estimated
the daily NEE for each site. These values were then used
for the second part of the work: an assessment of Euro-
pean NEE.

Assessment of European NEE by means of neural networks

In this study, a single network was used to assess NEE of
Europe in 1997. The year was split up into 48 periods,
four per each month.

The network, with a 12-5-1 structure (Fig. 6), was
trained with 760 examples (400 training set, 180 test set,
180 validation set) and generated as output the mean
NEE for the period, expressed in gCday .

The 12 input nodes used were:

one for the dew point temperature
one for the maximum air temperature
one for the minimum air temperature
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one for the mean air temperature

one for the maximum Normalized Difference Vegeta-
tion Index (NDVI)

three for the land cover type

four for the season (fuzzy).

The network structure and the input variables were
chosen after trying several networks, with a varying
number of hidden nodes and transfer functions. For the
input variables, the goal was to find the same meteoro-
logical inputs used in the daily application. It was not
possible to find PAR or other radiation maps of Europe
with weekly time resolution and 1km of spatial reso-
lution. Other inputs tried were a latitude map and a
digital elevation model but they didn’t improve the

NDVI Land cover Season (fuzzy)

Temperatures

': 5
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R

W
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Fig. 6 Scheme of the network used to assess the European NEE.

network’s performance. We have used four fuzzy values
to predict season. The four fuzzy values used were one of
many possible criteria for separating the seasons, for
example we could have used other variables such as
day length. However, this would be unlikely to improve
network performance because the network learns to time
season not only from the fuzzy values but also from an
integration between all the variables. This is possible
because of the many connections between the input, the
hidden and the output nodes so that there isn’t a variable
that guides only one aspect or an aspect guided only from
one variable.

Input data A set of input data concerning all the contin-
ent, in the form of a set of maps, was needed to train the
network and apply it to Europe. The values representing
the Euroflux sites positions were extracted from these
maps, and these data were used as input for the training
process.

In Fig. 7 it is shown the block scheme of preprocessing
of the input data to obtain the maps.

Maximum NDVI The NDVI maps used were derived
from images acquired by the NOAA-AVHRR sensor
(Cracknell, 1997), using bands set to 580-680 nm (R) and
720-1000nm (NIR), respectively. This satellite acquired
one image per day of the same area and had a geometric
resolution of about 1.1 km at nadir.

The EDC Distributed Active Archive Center (http://
edcdaac.usgs.gov) provides compositions obtained by
overlaying 10 images of 10 consecutive days from the
AVHRR sensor; for each pixel the highest value from the
resulting image is taken. Thus, the 10 days composition
image is a measure of the maximum value expressed by
each pixel in this 10 days period, in each acquisition band.
This composition image is also provided for the NDVI, so

10 day composition NDVI Land cover map from running

from AVHRR

v 3

r 1
Interpolation i | Reclassification (only forests) |
1 a

4 !

e—————————

r
I
I

ICIassificationi i Binary transformation !
[ l____.___l '_______l____.__T
| Georeferentation | ! Georeferentation |

48 maximum NDVI maps

3 forest type maps

________

Temperatures values
from European stations

v

! Interpolation with TIN |

192 temperatures maps|

» Overlay ¢
] 1

48 climate-vegetational homogeneity maps

Neural Network

Fig. 7 Block scheme of input data pre-
processing.
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each pixel is the maximum NDVI value expresses in the
10 days period.

The NDVI maps used in the present work were
acquired and elaborated in 1993. For the purpose of the
demonstration of the application of the methodology
this should not have a major impact on the validity of
the present work, however, in the future updated remote
sensing products are needed for a better quantification of
the sources and sinks distribution. On a 10 days basis the
images related to one year are 36 (three each month), but
we needed 48 images to complete our dataset, thus the
images were interpolated.

Finally, each image was classified in five classes of
NDVI distribution.

Temperatures data The climate data used in this work
were extracted from the global surface summary of day
data produced by the National Climatic Data Center
(NCDC, Asheville, USA). This database contained daily
summaries of hourly climate data from over 8000 geor-
eferenced worldwide stations, about 3000 of these in
Europe. From this database we extracted the dew point,
mean, maximum and minimum air temperatures of the
European stations together with their geographical
coordinates. Then, the mean of each temperature was
calculated for each station during all the 48 periods. In
total, we obtained 192 values for each station (four
temperatures x 48 periods).

Through Triangulated Irregular Networks (TINs) in-
terpolation method, climatic data were interpolated
across Europe.

With this procedure, we created 192 maps of European
temperatures, four for each of the 48 periods. Also these
temperatures maps were further reclassified in 12 classes.

Land cover The most accurate map for Europe is the
Corine Land Cover but unfortunately this map does not
cover all Europe and for this reason Corine was dis-
carded. For the purpose of this study, the Vegetation
Lifeforms map (Running ef al., 1994) was used.

The Vegetation Lifeforms map has seven cover types:

Evergreen Needleleaf Vegetation
Evergreen Broadleaf Vegetation
Deciduous Needleleaf Vegetation
Deciduous Broadleaf Vegetation
Annual Broadleaf Vegetation
Annual Grass Vegetation
Non-vegetated Land

Water Bodies

PN RN

Our work focused only on forests thus we reclassified it
into only three classes: evergreen broadleaf, deciduous
broadleaf and evergreen needleleaf. The deciduous nee-
dleleaf class was added to the deciduous broadleaf
because there are no eddy flux stations in this forest

© 2003 Blackwell Publishing Ltd, Global Change Biology, 9, 525-535

type. This problem was minor because the presence of
deciduous needleleaf forest is not extensive in Europe.

The land cover map thus modified, was converted in
a set of three binary images, with value 0 for false and
1 for true, each of these concerning the presence or ab-
sence of one of the three-forest cover type.

Georeferencing In order to work with all the eight layers
at the same time, the eight maps created needed to be
georeferenced. As the original maps used different pro-
jections it was impossible to overlay them. Consequently,
a set of about 70 ground control points spread in Europe,
a third order mapping function and the latitude longitude
reference system were used for georeferencing. The error
in the output maps was less then 1%, due principally to
the different geometric resolution of the input images.

Layers overlay  For all the 48 periods, the eight layers were
overlaid to create a new map where the classes were the
result of each combination among the input map classes
resulting in a climate-vegetation homogeneity classifica-
tion (CVHC). Each class of each of the new maps (48 new
maps, one for each period) was characterized by 12 values:
eight from the maps (four for the temperatures, three for the
forest type and one for the NDVI) and four from the fuzzy
values of the season of the period.

Finally the network was trained and applied using this
input data to reproduce an estimate of NEE for each class
of the CVHC.

Results and discussion

Gap filling at each flux tower site

Before spatializing NEE data across Europe, gap filling of
nigh time fluxes at some sites was necessary. Nighttime
fluxes and gaps in data acquisition were filled with a
specific neural network application. Figure 8 shows an
example of the application of neural network generated
data for site four (Bordeaux) where the model data are
compared with the real eddy flux dataset not used during
the training phase. Thus this represents the real perform-
ance of the generalization. Figure 9 shows an example of
generalization of a comparison of daily trends in real and
ANN data.

Despite some days with calm night where ANN and
real data behave differently, due to the fact that real data
are not u* corrected, the agreement between data and
ANN is remarkable. It is worth to notice that ANN pre-
dictions tend to discard noisy data that are unlikely to
represent real processes.

The synthesis of the gap filling procedure and error
analysis for four sites is presented in Table 2. For all the
sites the Pearson coefficient was above 0.81 indicating a
good agreement between the ANN and real data.
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Fig. 8 Eddy vs. ANN flux values for validation dataset. Site
number 4 (Bordeaux). Also shown isa1:1 line.
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Fig.9 Eddy vs. ANN daily trend for a 10 days period.

Table 2 Gap filling summary for four sites

Castelp
orziano Bordeaux Flakaliden Norunda

Examples with

u*>0.2 9045 11372 13573 13441
Validation dataset 3729 5221 5459 5374
Data type Data type Data type Data type
Mean —-3.611 —2.241 —0.641 0.181
STD 5.925 6.550 3.532 8.659
Minimum value —21.35 3345 —28.68 —49.85
Maximum value 14.53 44.58 24.76 65.38
Errors Errors Errors Errors
Pearson 0.887 0.916 0.845 0.813
RMSE 2.766 2.489 1.897 5.000
MAE 2.029 1.662 1.135 3.358

Data and errors analysis. Values in pmol CO, m™2s™".

The examples above highlight the efficiency of ANN
for data recovery and gap filling. Ultimately, ANNs may
prove to be superior to the normal regression or model-
ling approaches for data recovery and gap filling. (Van
Wijk & Bouten, 1999; Falge et al., 2001).

NEE spatialization with ANN

In order to scale up the single flux tower data to the
European continent, a single ANN was created using all
the 16 flux sites datasets. In this case the training and
validation was created with weekly data. Figure 10
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Fig. 10 Eddy vs. ANN NEE values for validation dataset. Also
shownis a1:1 line.
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Fig. 11 Eddy vs. ANN NEE annual sum values for the 16
training sites. Also shownis a 1:1 line.
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shows the comparison between the ANN generalization
and the real data, not used during the training phase.

A comparison between annual sums of NEE, derived
from the same ANN, and real data in shown in Fig. 11.
For this data there was a clear decrease in the predictive
power of ANN. However, an in depth look to the site
specific data highlights how several sites may be outliers,
in particular 7 (Norunda), 8 (Bayreuth), 9 (Tharandt) and
11 (Aberfeldy).

Site 7 is unique in the network since it is the only site
that is proved by ecological considerations to be a source
of carbon (Lindroth et al., 1998) (while site 8 also appears
to be a carbon source there are particular problems at this
site, see below). Site 7 also exhibits high interannual vari-
ability. Site 11 is an artificial plantation of fast growing

species, which has previously been shown to be an outlier
in the latitudinal trend of this dataset (Valentini et al., 2000).
Site 8 has been reanalysed recently and shown to have a
heterogeneous canopy with a problematic fetch (T. Foken,
personal communication). The reasons for site 9 being an
outlier are not clear, however, an eddy covariance software
intercomparison for this site showed the greater departure
from the mean (EUROFLUX, 1999).

The differences between ANN estimates of annual
NEE and real data can also be partially attributed to the
fact that we have used a single network for all the sites.
Consequently, some of the data from the sites identified
as outliers could not be reproduced well. This finding
highlights how ANNSs will be useful for detecting noise
(outliers) from an underlying signal. However, difference

Fig. 12 Examples of NEE maps gener-
ated. Each figure shows second week of
each month.
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Fig.13 Daily average carbon balance per

ground unit, divided in north (>52°N),

central (52°—44°N), and south Europe
(< 44°N).
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between short- and long-time (as annual) performance
was found also by Barciela et al. (1999) modelling ocean
productivity.

Figure 12 shows the final monthly estimates of NEE for
Europe derived from ANN. The overall European carbon
uptake from this analysis was 0.47 Gt Cyr . This value is
within the range of 0.2-0.7 Gt Cyr ™" for Europe reported
recently for several techniques (Schulze et al., 2001).

An analysis of the forest carbon exchange per unit of
ground (m?) is presented in Fig. 13, according to three
latitude classes (>52°, 52° —44°, <44°). At all latitudes

cumulative forest area in north, central,
and south Europe.

there is a pulse of respiration in spring. This sudden
increase of respiration may be due to increased construc-
tion respiration at the onset of the season. This effect has
been clearly shown at leaf scale for deciduous species,
where an increase in respiration was measured before
bud burst and also during leaf expansion (Schulze &
Koch, 1971). It is however, interesting to see it at the
continental scale as a coherent functional response.
Thus this is an example where a ‘biological’ signal at
leaf scale can have a significant effect in driving contin-
ental biosphere — atmosphere fluxes.
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The other interesting feature is that the length of the
growing season is longer in the south of Europe of about
32weeks, compared with north and central Europe
which have a similar length growing season of about
27 weeks.

When expressed per unit ground area the northern
forests of Europe exhibit the lowest rate of carbon uptake
(Fig. 13). However, due to the large spatial extend they
represent the largest component of the European carbon
sink (Fig. 14).

Conclusions

In this study, we have presented ANNs as a new method
for estimating forest ecosystem fluxes at European scale.
ANN may have significant advantages over traditional
modelling techniques and represent a change in the
philosophy of model development for biospheric fluxes
towards a strong emphasis on feedbacks with observa-
tional data as a ‘constraint’ for predictions. This study has
shown that ANNs may be particularly useful at the single
site level for optimizing the gap filling procedures. They
may offer the best performance and be used as a routine
system for gap filling. Weekly data spatialization (one
general ANN for all the sites) predictions were good
but could be further improved with additional and better
quality input data. In particular (1) in this study, the land
cover representation was coarse, (2) NDVI could be
obtained in real time, (3) more sites are becoming avail-
able for ANN training and (4) solar radiation inputs
could be added. The ANN outputs for annual sums of
NEP were not of the same quality as the high temporal
frequency data. However, the discrepancies were largely
due to the incorporation of sites with known problems of
data interpretation. This study shows that ANN methods
have a clear capacity to extract outliers and specific be-
haviours, which can be used for the improvement of
process description. Another potential use of ANN
could be to combine observations and modelling outputs
to improve atmospheric and biospheric models parame-
terization.
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